建設工程教育網(wǎng) > 建筑文苑 > 結構設計 > 正文
2005-09-16 00:00 【大 中 小】【打印】【我要糾錯】
摘要: 針對施工圖設計階段,提出壩陵河懸索橋西岸隧道式錨碇及其邊坡的巖體工程地質(zhì)力學(xué)研究建議,包括:錨碇圍巖工程地質(zhì)條件研究、錨碇圍巖工程力學(xué)特性研究、錨碇圍巖滲透及抗溶蝕特性研究、錨碇及其圍巖相互作用三維數值模擬研究、錨碇隧道鉆爆開(kāi)挖及支護的施工技術(shù)試驗、錨碇錨固系統試驗和大體積混凝土澆筑防裂的施工技術(shù)研究。
關(guān)鍵詞: 懸索橋 隧道式錨碇 施工圖設計階段 巖體工程地質(zhì)力學(xué) 研究建議
1 前言
壩陵河大橋離擬建貴州省鎮寧至勝境關(guān)高速公路起點(diǎn)約21km,地處黔中山原地帶。高速公路在關(guān)嶺縣東北跨越壩陵河峽谷,峽谷兩岸地勢陡峭,地形變化急劇,高差起伏大,河谷深切達400~600m.橋址區屬構造剝蝕、溶蝕中低山河谷地貌。巖石建造類(lèi)型以碳酸鹽巖與陸源碎屑巖互層,以碳酸鹽巖構成峽谷谷坡,以碎屑巖互層構成谷底及緩坡為基本特征。壩陵河流向與區域地質(zhì)構造線(xiàn)方向(NW)基本一致。河谷西岸地形較陡,地形坡度40~70°,近河谷一帶為陡崖。橋位區西岸(關(guān)嶺岸)錨碇地段處于斜坡中部,出露的巖層有三疊系中統竹桿坡組第一段(T2z1)中厚層狀泥晶灰巖和楊柳井組(T2y)中厚層狀白云巖[1,2].弱風(fēng)化巖體直接出露于地表,微新巖體埋深30~50m.
壩陵河懸索橋主跨1068m,橋面總寬度24.5m,東岸錨碇采用重力式錨,西岸錨碇采用隧道式錨。西岸隧道式錨碇在技術(shù)設計中全長(cháng)74.7m,最大埋深78m,主要由散索鞍支墩、錨室(34.7m)和錨塞體(40m)三部分組成,兩錨體相距18~6.36m.錨塞體和錨室為一傾斜、變截面結構,上緣為圓形,下緣為矩形,縱向呈楔形棱臺,矩形截面尺寸為10m×5.8m~21m×14.5m.西岸每根主纜纜力(P)約為270MN,水平夾角約26°。錨體中設預應力錨固系統,主纜索股通過(guò)索股錨固連接器與錨體中的預應力錨固系統連接。
懸索橋錨碇在承受來(lái)自主纜的豎向反力的同時(shí),主要還承受主纜的水平拉力,是懸索橋的關(guān)鍵承載結構之一,其總體穩定性和受力狀態(tài)直接影響到大橋的安全和長(cháng)期使用的可靠性。壩陵河懸索橋是鎮寧-勝境關(guān)高速公路的重要節點(diǎn),針對該大橋施工圖設計階段,本文提出壩陵河懸索橋西岸隧道式錨碇及其邊坡的工程地質(zhì)力學(xué)研究建議。鑒于錨碇型式受到地形、地質(zhì)條件的限制,國內外采用隧道式錨碇的大跨懸索橋為數較少[3-7],見(jiàn)諸文獻報道的更少,本研究建議有不適當之處,請專(zhuān)家批評指正。
2 巖體工程地質(zhì)力學(xué)研究建議
2.1 錨碇圍巖工程地質(zhì)條件研究
西岸隧道式錨碇坐落于邊坡淺表弱風(fēng)化~微新巖體中,弱風(fēng)化~微新巖體的工程地質(zhì)條件關(guān)系到錨碇隧洞的成洞條件及錨碇體系在主纜拉力荷載作用下的整體穩定狀態(tài)。
邊坡淺表部中存在卸荷巖體。巖體卸荷帶是伴隨河谷下切過(guò)程或邊坡開(kāi)挖過(guò)程中,由于應力釋放,巖體向臨空面方向發(fā)生卸荷回彈變形,能量的釋放導致斜坡淺表一定范圍巖體內應力的調整,淺表部位應力降低,而坡體更深部位產(chǎn)生更大程度的應力集中。由于表部應力降低導致巖體回彈膨脹、結構松弛,破壞巖體的完整性,并在集中應力和殘余應力作用下產(chǎn)生卸荷裂隙。巖體應力的降低最直觀(guān)的表現是導致巖體松弛和原有的裂隙發(fā)生各種變化,形成新環(huán)境下的裂隙網(wǎng)絡(luò )。這些裂隙一部分是遷就原有構造裂隙引張擴大經(jīng)改造形成[8],有一些是微裂隙擴展后的顯式裂隙,也有在新的應力環(huán)境和外動(dòng)力環(huán)境下形成的裂隙。在巖體卸荷、應力降低的過(guò)程中,隨著(zhù)新的裂隙系統的形成,也為外動(dòng)力或風(fēng)化營(yíng)力提供了通道,加速巖體的風(fēng)化和應力的進(jìn)一步降低。風(fēng)化巖體裂隙的增多,是巖體卸荷和風(fēng)化共同造就的。
西岸錨碇邊坡巖體在淺部節理裂隙發(fā)育,巖體透水性較好,滲透系數高;隨著(zhù)深度的增加,透水性逐漸減弱。深部的巖溶發(fā)育情況有待研究。
據初步設計階段工程勘察資料,西岸錨碇邊坡出露的灰巖和白云巖的產(chǎn)狀為:傾向50~80°,傾角48~87°。主要發(fā)育三組優(yōu)勢節理:①155°∠57°;②220°∠34°;③333°∠46°。在巖層層面、不利結構面組合切割和深部巖溶發(fā)育情況下,在主纜巨大拉力下,不能夠排除存在深部拉裂滑移面威脅西岸錨碇邊坡整體穩定性的可能性。
錨碇圍巖工程地質(zhì)條件研究?jì)热莅ǎ?/P>
。1)研究從邊坡表部至深部巖體中裂隙的分布密度及張開(kāi)度變化,揭示巖體的卸荷程度,為錨碇施工期和運行期邊坡巖體質(zhì)量評價(jià)以及巖體質(zhì)量變化趨勢提供可靠基礎資料;
。2)在巖層層面和不利結構面組合切割下,由于錨碇工程荷載,研究巖體中形成的潛在不穩定塊體的安全度以及西岸錨碇邊坡的整體穩定性;
。3)采用地球物理勘探方法,研究邊坡深部溶蝕裂隙與溶蝕洞穴的分布規律及其發(fā)育特征。
2.2 錨碇圍巖工程力學(xué)特性研究
主懸索的巨大拉力通過(guò)索股、錨桿傳人隧道中填充的(預應力)混凝土,再通過(guò)(錨塞體)混凝土與隧道巖體的摩阻力和粘結力傳遞給周?chē)膸r體。隧道式錨碇在巨大主纜拉力荷載作用下,不僅要維持自身的抗拔穩定,同時(shí)還要將自身承受的主纜拉力傳遞到錨碇圍巖中,以充分利用圍巖的承載能力,使錨碇和圍巖共同作用形成一個(gè)整體的承載體系。
錨碇圍巖工程力學(xué)特性研究包括三個(gè)方面:
。1)錨塞體與巖體之間的抗剪摩擦力學(xué)性能[9,10]和粘結特性試驗研究;
。2)錨碇下部及兩錨體之間的巖體處于復雜的拉剪應力狀態(tài),研究錨碇圍巖在拉剪應力下的變形及強度特性,尤其是弱風(fēng)化~微新圍巖在拉剪復雜應力下的變形、強度及疲勞試驗研究,模擬其破壞現象和破壞過(guò)程,從而掌握其破壞機制;
。3)巖體在中度~輕度工程爆破開(kāi)挖擾動(dòng)下的力學(xué)性能研究。
錨碇圍巖工程力學(xué)試驗目的是確定錨碇邊坡巖體力學(xué)參數建議值,供設計和三維數值仿真采用。建議在設計錨碇區域附近開(kāi)挖一試驗斜硐,采取巖樣,并在硐壁打適量鉆孔,進(jìn)行室內巖石力學(xué)試驗和原位巖石力學(xué)性質(zhì)及配套的各項試驗研究工作。主要包括室內巖石力學(xué)三軸剪切試驗、節理(裂隙)測量、巖體變形特性(靜載)試驗、巖體抗剪(抗剪斷)試驗、巖體抗拉試驗、混凝土與基巖膠結面抗剪和摩擦等試驗和硐室聲波普測、硐室地球物理勘探、含水量測試、鉆孔聲波測試、鉆孔壓水試驗等試驗研究工作。錨碇系統的摩阻力由基巖與錨碇系統接觸面的正應力與摩擦系數來(lái)決定,摩擦系數一般由相似原理進(jìn)行模型試驗或現場(chǎng)測試得到。硐室地球物理勘探是查明錨碇圍巖(主要是錨碇下部及兩錨體之間的巖體)中的巖溶發(fā)育情況。
試驗資料的整理應通過(guò)對現場(chǎng)和室內大量試驗數據的綜合分析,結合現行有關(guān)行業(yè)規范(規程)和工程經(jīng)驗的類(lèi)比,提出西岸隧道式錨碇邊坡區域巖體力學(xué)參數建議值,供設計采用。
2.3 錨碇圍巖滲透及抗溶蝕特性研究
壩陵河懸索橋西岸錨碇圍巖為弱風(fēng)化~微新的灰巖和白云巖,屬于易溶蝕化巖體。錨碇邊坡地段地下水主要為(節理)裂隙水、巖溶裂隙水和巖溶孔(洞)穴水。西岸隧道式錨碇錨體混凝土澆筑后,在邊坡巖體中形成不透水體(阻滲體),從而改變錨碇邊坡的地下水滲流場(chǎng)?梢灶A見(jiàn),地下水將從錨塞體混凝土邊緣繞滲,因此錨塞體與圍巖的交界部位巖體更易遭到溶蝕,削弱錨塞體混凝土與圍巖之間的摩阻力和粘結力。錨碇圍巖滲透特性的研究應著(zhù)重錨塞體與圍巖的交界部位巖體的滲透性能與抵抗溶蝕的能力的試驗研究。
為防治錨塞體與圍巖交界部位巖體的溶蝕危害采取的工程措施,主要是加強錨碇邊坡坡面的排水工程。
2.4 錨碇及其圍巖相互作用三維數值模擬研究
由于懸索橋安全是依靠錨碇固定橋的體系,錨碇發(fā)生移動(dòng)將嚴重影響橋梁體系,甚至導致橋體破壞,因此研究西岸隧道式錨碇的錨塊及其圍巖在主動(dòng)拉力作用下的穩定性、瞬時(shí)變位與長(cháng)期變位是相當重要的。應建立真實(shí)反映隧道式錨碇錨體和圍巖二者相互作用、考慮施工過(guò)程非線(xiàn)性、地質(zhì)結構面影響等的三維數值仿真模型,對錨碇穩定性及變位進(jìn)行預測[11].
2.5 錨碇隧道鉆爆開(kāi)挖及支護的施工技術(shù)試驗
根據西岸隧道式錨碇為傾斜、變截面的工程特點(diǎn),需研究錨碇隧道的鉆爆開(kāi)挖以及支護的施工技術(shù)[12-14].在隧道式錨碇施工過(guò)程中,自始至終都要注意嚴格控制圍巖的完整性,盡量避免對圍巖產(chǎn)生過(guò)大的擾動(dòng)。為保證主纜等硐內鋼結構的使用壽命,錨碇的防水按GB50108-2001二級標準進(jìn)行控制,要求較高。施工開(kāi)挖后應對圍巖中的塑性變形帶進(jìn)行擠密壓漿處理,以使錨塞體混凝土與圍巖緊密結合。
2.6 錨碇錨固系統試驗
試驗目的是驗證用于壩陵河大橋錨碇錨固系統的各產(chǎn)品力學(xué)性能是否滿(mǎn)足設計要求。試驗內容包括錨拉桿組件靜載試驗、疲勞試驗及錨具組裝件靜載試驗和疲勞試驗[15]等。
2.7 大體積混凝土澆筑防裂的施工技術(shù)研究
壩陵河懸索橋西岸隧道式錨碇錨塞體混凝土澆筑量約2×12143.322m3.錨碇結構混凝土澆筑量大,強度高,對施工工藝及養護維修提出了更高的要求;而大體積混凝土澆注施工由于受多種因素影響,若措施不當,很容易出現裂縫,影響到錨塞體混凝土的整體性強度以及鋼筋的耐久性和實(shí)用性。西岸隧道式錨碇錨塞體大體積混凝土澆筑防裂技術(shù)從混凝土原材料選取和配合比的選擇、降低原材料溫度和控制混凝土拌和物溫度、合理選擇澆筑工藝和保證整體質(zhì)量、有效控制混凝土內外溫差到對混凝土溫度進(jìn)行監控及時(shí)掌握混凝土溫度變化動(dòng)態(tài)等一系列技術(shù)措施[16-22],都可借鑒汕頭海灣懸索橋、宜昌長(cháng)江公路大橋和重慶鵝公巖大橋的做法。
3 結語(yǔ)
針對施工圖設計階段,提出壩陵河懸索橋西岸隧道式錨碇及其邊坡的巖體工程地質(zhì)力學(xué)研究建議,包括:錨碇圍巖工程地質(zhì)條件研究、錨碇圍巖工程力學(xué)特性研究、錨碇圍巖滲透及抗溶蝕特性研究、錨碇及其圍巖相互作用數值模擬研究、錨碇隧道鉆爆開(kāi)挖及支護的施工技術(shù)試驗、錨碇錨固系統試驗和大體積混凝土澆筑防裂的施工技術(shù)研究。
1、凡本網(wǎng)注明“來(lái)源:建設工程教育網(wǎng)”的所有作品,版權均屬建設工程教育網(wǎng)所有,未經(jīng)本網(wǎng)授權不得轉載、鏈接、轉貼或以其他方式使用;已經(jīng)本網(wǎng)授權的,應在授權范圍內使用,且必須注明“來(lái)源:建設工程教育網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其法律責任。
2、本網(wǎng)部分資料為網(wǎng)上搜集轉載,均盡力標明作者和出處。對于本網(wǎng)刊載作品涉及版權等問(wèn)題的,請作者與本網(wǎng)站聯(lián)系,本網(wǎng)站核實(shí)確認后會(huì )盡快予以處理。
本網(wǎng)轉載之作品,并不意味著(zhù)認同該作品的觀(guān)點(diǎn)或真實(shí)性。如其他媒體、網(wǎng)站或個(gè)人轉載使用,請與著(zhù)作權人聯(lián)系,并自負法律責任。
3、本網(wǎng)站歡迎積極投稿。